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We present a continuum-mechanical formulation and generalization of the Navier-Stokes � theory based on
a general framework for fluid-dynamical theories with gradient dependencies. Our flow equation involves two
additional problem-dependent length scales � and �. The first of these scales enters the theory through the
internal kinetic energy, per unit mass, �2�D�2, where D is the symmetric part of the gradient of the filtered
velocity. The remaining scale is associated with a dissipative hyperstress which depends linearly on the
gradient of the filtered vorticity. When � and � are equal, our flow equation reduces to the Navier-Stokes �
equation. In contrast to the original derivation of the Navier-Stokes � equation, which relies on Lagrangian
averaging, our formulation delivers boundary conditions. For a confined flow, our boundary conditions involve
an additional length scale � characteristic of the eddies found near walls. Based on a comparison with direct
numerical simulations for fully developed turbulent flow in a rectangular channel of height 2h, we find that
� /��Re0.470 and � /h�Re−0.772, where Re is the Reynolds number. The first result, which arises as a conse-
quence of identifying the internal kinetic energy with the turbulent kinetic energy, indicates that the choice
�=� required to reduce our flow equation to the Navier-Stokes � equation is likely to be problematic. The
second result evinces the classical scaling relation � /L�Re−3/4 for the ratio of the Kolmogorov microscale �
to the integral length scale L. The numerical data also suggests that ���. We are therefore led to conjecture
a tentative hierarchy, �����, involving the three length scales entering our theory.
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I. BACKGROUND

The Lagrangian averaged Navier-Stokes � model for
�statistically homogeneous and isotropic� turbulent flow
yields a governing equation for the filtered velocity v that
can be expressed in the form

�v̇ = − grad p + ��1 − �2	�	v + 2��2 div D; �1�

�1� is commonly referred to as the Navier-Stokes � equation.
In this equation: v is subject to the incompressibility
constraint

div v = 0; �2�

v̇=�v /�t+ �grad v�v is the material time derivative of v; p is
the filtered pressure; 	 is the Laplace operator;

D =
1

2
�grad v + �grad v�T� �3�

is the filtered stretch rate;

Ḋ = Ḋ + DW − WD , �4�

is the corotational rate of D, with

W =
1

2
�grad v − �grad v�T�

the filtered spin. The Lagrangian averaged Euler equation,
which is �1� with �=0, was originally derived by Holm,
Marsden, and Ratiu �1,2�. Subsequently, Chen, Foias, Holm,

Olson, Titi, and Wynne �3–5� added the viscous term to the
Lagrangian averaged Euler equation, giving �1�.

Aside from the density � and the shear viscosity �, the
flow equation �1� involves an additional parameter �
0 car-
rying dimensions of length. Within the framework of La-
grangian averaging, � is the statistical correlation length of
the excursions taken by a fluid particle away from its phase-
averaged trajectory. More intuitively, � is often interpreted
as the characteristic linear dimension of the smallest eddies
that the model is capable of resolving. Like equations arising
from Reynolds averaging, the Navier-Stokes � equation pro-
vides an approximate model that resolves motions only
above some critical scale, while relying on filtering to ap-
proximate effects at smaller scales. A synopsis of properties
and advantages of the Navier-Stokes � equation is provided
by Holm, Jeffrey, Kurien, Livescu, Taylor, and Wingate �6�.

The structure of �1� is formally suggestive of a conserva-
tion law expressing the balance of linear momentum, and
one might ask whether there is a complete continuum me-
chanical framework in which the Navier-Stokes � equation
is embedded along with suitable boundary conditions. Based
on experience with theories for structured media �7�, the
presence of a term involving the fourth-order spatial gradient
of the velocity indicates that any such framework should
involve a hyperstress in addition to the classical Cauchy
stress. Within the context of turbulence theory, a hyperstress
might be viewed as providing a means to account for inter-
actions across disparate length scales.

PHYSICAL REVIEW E 75, 056306 �2007�

1539-3755/2007/75�5�/056306�10� ©2007 The American Physical Society056306-1

http://dx.doi.org/10.1103/PhysRevE.75.056306


II. PRINCIPLE OF VIRTUAL POWER

To see the need for an additional hyperstress assume an
inertial frame, neglect noninertial body forces, and note first
that the weak form of the classical momentum balance

div T + b = 0 , �5�

with inertial force

b = − �v̇ �6�

treated for convenience as a body force, has the form

�7�

with

tn = Tn �8�

the classical surface traction of Cauchy. Granted smoothness
�7� holds for all virtual velocities �i.e., test fields� � and all
control volumes R if and only if the balance �5� is satisfied at
all points in the fluid and the traction condition �8� is
satisfied—for any choice of the unit vector n—at all points
in the fluid. Moreover, the requirement of frame-indifference
applied to �7� yields the symmetry of the stress T.

When � represents the velocity v, the weak balance �7� is
a physical balance

�9�

between

�i� the external power Wext�R�, which represents power
expended on R by tractions acting on �R and power ex-
pended by the inertial force b;

�ii� the internal power Wint�R�, the integrand of which
represents the classical stress power T :grad v expended
within R by the stress field T.

Here and in what follows, we write Wext�R� for the external
power associated with an actual flow and Wext�R ,�� for the
�virtual� external power associated with a virtual velocity
field �.

The balance �7� represents a nonstandard version of the
classical principle of virtual power, as formulated by Gurtin
�8�. This nonstandard form has been generalized by Fried
and Gurtin �7� to develop a gradient theory for liquid flows at
small length scales and, when combined with suitable con-
stitutive relations, results in a partial differential equation
slightly more general than �1� but with the term involving the
corotational rate of D removed. Conventional versions of this
principle are formulated for the fluid region as a whole rather
than for control volumes and as such generally involve par-
ticular boundary conditions. Here the principle of virtual
power is used instead as a basic tool in determining the struc-
ture of the tractions and of the local force balances. As such,

conditions on the external boundary play a role no different
from those on the boundary of any control volume. Basic to
this view is the premise, central to all of continuum mechan-
ics, that any basic law for the body should hold also for all
subregions of the body. On more pragmatic grounds, the
nonstandard formulation allows for the derivation of the as-
sociated angular momentum balance.

To capture the internal power associated with the forma-
tion of eddies during turbulent flow we generalize the clas-
sical theory by including in the internal power a term linear
in the vorticity gradient

grad � = grad curl v .

Specifically, we introduce a second-order tensor-valued hy-
perstress G via an internal power expenditure of the form
G :grad � and rewrite the power expended within R in the
form

Wint�R� = �
R

�T:grad v + G:grad ��dv . �10�

In conjunction with the internal power expenditure �10�,
we introduce a corresponding external power expenditure

Wext�R� = �
S
�tS · v + mS ·

�v

�n
	da + �

R

b · vdv , �11�

in which tS and mS represent tractions on the bounding sur-
face S=�R of R, while b represents the inertial body force
�6�. Here the term

mS ·
�v

�n
, �12�

which is not present in classical theories, is needed to bal-
ance the effects of the internal-power term G :grad �, which
involves the second gradient of v.

The principle of virtual power replaces v by � and
�hence� � by curl � and is based on the requirement that the
virtual expenditures of internal and external power be equal,

�13�

for all control volumes R and any choice of the virtual ve-
locity field �.

III. LOCAL BALANCE LAW FOR LINEAR MOMENTUM:
TRACTION CONDITIONS

Consequences of the principle of virtual power and the
additional stipulation that the internal power expenditure be
frame indifferent are that
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�i� The classical macroscopic balance �v̇=div T must be
replaced by the balance

�v̇ = div T + curl div G , �14�

with T symmetric as in the classical theory, viz.,

TT = T . �15�

�ii� Cauchy’s classical condition tn=Tn for the traction
across a surface S with unit normal n must be replaced by
the conditions

tS = Tn + divS�Gn � � + n � �div G − 2K Gn� ,

mS = n � Gn , �16�

where divS is the divergence operator on S, given a
vector a, a� is the second-order tensor defined so that
�a� �b=a�b for all vectors b, and K=− 1

2 divS n is the
mean curvature of S. Thus, interestingly, the traction tS de-
pends on the mean curvature; in fact, the term divS�Gn� �
results in a dependence on the full curvature tensor
K=−gradS n.

Being independent of constitutive assumptions, these re-
sults apply to fluids and solids alike.

Within the framework of finite deformations of an elastic
solid with couple stress, the balance �14� was first derived by
the Cosserats �9�; see, also, Toupin �10,11�, Mindlin and
Tiersten �12�, and Green and Naghdi �13�. The traction con-
ditions �16� are special cases of traction conditions derived
variationally by Toupin �10,11� for the boundary of the
elastic solid.

The balance �14� and the traction conditions �16� are spe-
cial cases of Eqs. �5.11� and �5.12� of Fried and Gurtin �7�,
whose theory replaces curl � in the internal power with the
full second gradient grad2 v and G by an analogous third-
order hyperstress; see, also, Bluestein and Green �14�, who
discuss second-gradient fluids based on the multipolar theory
of second-gradient materials due to Green and Rivlin �15�.
The multipolar theory results in redundant boundary condi-
tions, which Bluestein and Green �14� reduce using ad hoc
arguments.

IV. ENERGETICS

We restrict attention to a purely mechanical theory based
on the requirement that the temporal increase in free energy
of an arbitrary region R�t� that convects with the body be
less than or equal to the power expended on that region.
Precisely, letting � denote the specific free energy, this re-
quirement takes the form of a free-energy imbalance

d

dt
�

R�t�
��dv � Wext�R�t�� , �17�

where Wext is as defined in �11�. The imbalance �17� is con-
sistent with standard continuum thermodynamics based on
balance of energy and an entropy imbalance �the Clausius-
Duhem inequality�, when that imbalance is restricted to iso-
thermal processes.

Balance of mass implies that

d

dt
�

R�t�
��dv = �

R�t�
��̇dv;

since Wext�R�t��=Wint�R�t��, we may therefore use the ex-
pression �10� for the internal power Wint�R�t�� in conjunc-
tion with the requirement �15� that T be symmetric, to local-
ize �17�; the result is the local free-energy imbalance

��̇ − T:D − G:grad � � 0, �18�

where D as introduced in �3� is the stretching.

V. SIMPLE CONSTITUTIVE EQUATIONS

We assume that the fluid is incompressible, so that

� = constant and div v = tr D = 0. �19�

Without loss in generality, we may then suppose that

T = S − p1, with tr S = 0, �20�

where the pressure p is a constitutively indeterminate field
that does not affect the internal power �10�; the field S rep-
resents the extra stress. Then, by the second equation in �19�,

T:D = S:D �21�

and the local free-energy imbalance �18� reduces to

S:D + G:grad � − ��̇  0. �22�

Guided by the presence of the term involving the corota-
tional rate of the stretching tensor D in the Navier-Stokes �
equation �1�, we suppose that the specific free energy � and
the extra stress S are given by constitutive equations of the
form

� = �2�D�2 and S = 2�D + 2��2D̊ , �23�

with �0 and � constant. These choices are familiar from
the theory of Rivlin-Ericksen fluids; see, also, Rivlin and
Ericksen �16�, Sec. 119 of Truesdell and Noll �17�, and Dunn
and Fosdick �18�. For turbulent flow, �=�2�D�2 might best
be viewed as a �specific� internal kinetic energy which ac-
counts for the dispersive transfer of energy between eddies
of different scales. Hereafter, we use this terminology.

Futher, we assume that the hyperstress G depends linearly
on the vorticity gradient. It then follows that

G = ��2�grad � + ��grad ��T� , �24�

with �0 and � constant. With the choices �23� and �24�,
the dissipation inequality �22� holds if and only if

�  0 and ��� � 1. �25�

Whereas � is the conventional shear viscosity, the consti-
tutive parameters � and � carry dimensions of length.
Whereas � is related to the internal kinetic energy � and,
therefore, to the nondissipative contribution to the extra
stress S, � is associated with the wholly dissipative hyper-
stress G. To ensure that � has a strict minimum when D=0,
we assume that
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� 
 0. �26�

Further, to ensure that the hyperstress is nontrivial when
grad ��0, we assume that

� 
 0. �27�

When discussing turbulence, it is conventional to divide
the range of eddy scales into integral, inertial, and dissipative
subranges �aside from the classical contributions of Richard-
son �19� and Kolmogorov �20–22�, see Pope �23��. The inte-
gral scales are the largest and are associated with external
driving forces. The dissipative scales are the smallest and are
associated with the conversion of kinetic energy into heat.
The intermediate, inertial, scales are commonly thought to be
dissipationless. It seems reasonable to expect that the ener-
getic length � should represent a characteristic average of the
eddy scales within the inertial subrange whereas � should
represent a characteristic average of the eddy scales within
the dissipative subrange, in which case � and � would obey

� � � . �28�

Using �23� and �24� in �14� and bearing in mind that the
moduli �, �, �, and � are assumed to be constant, we arrive
at the flow equation

�v̇ = − grad p + ��1 − �2	�	v + 2��2 div D̊ , �29�

which, for the particular choice �=� specializes to the
Navier-Stokes � equation �1�. In view of the foregoing dis-
cussion, this particular choice embodies a questionable as-
sumption concerning the relationship between the scales of
inertial and dissipative eddies. We refer to �29� as the Navier-
Stokes �� equation.

The parameter �, which is dimensionless, does not enter
the flow equation �29�. However, as is clear from the second
equation in �16� and �24�, � would generally be present in
any boundary condition in which the hypertraction is pre-
scribed. �In this regard, consider the condition �35�.�

By assuming that the internal kinetic energy �, extra
stress S, and hyperstress G are as given in �23� and �24�, we
are motivated primarily by the desire to obtain the simplest
possible framework encompassing the Navier-Stokes �
equation �1�. Precedent for �23� can be traced to Rivlin
�24,25�, who showed that the laminar flow of a non-
Newtonian fluid in a duct with an elliptical cross section is
necessarily accompanied by secondary flow in the cross-
sectional plane and, thereby, noted the analogy between the
turbulent flow of a Newtonian fluid and the laminar flow of a
non-Newtonian fluid. An overview of history, advantages,
and limitations of nonlinear eddy-viscosity models based on
Rivlin-Ericksen fluids of second and higher grade is pro-
vided by Gatski �26�. A discussion of the connection between
the Navier-Stokes � model and non-Newtonian rheological
models is provided by Foias, Holm and Titi �27�.

VI. BOUNDARY CONDITIONS

We develop counterparts of the classical notions of a free
surface and a fixed surface without slip. Our results hinge on

rewriting the external power expenditure �11� for the entire
fluid body B and focusing on that portion of that expenditure
associated with tractions. In this regard, we derive boundary
force and moment balances

tS = t�B
env + 2�Kn and mS = m�B

env �30�

giving the tractions tS and mS in terms of their environmen-
tal counterparts t�B

env and m�B
env, and use these balances to ex-

press the power expended by tractions in the form

P��B� =
def�

�B
��t�B

env + 2�Kn� · v + m�B
env · P

�v

�n
	da , �31�

where P=1−n � n. We assume that the mean curvature K
of—and the surface tension � at—the boundary �B are
known; �31� then suggests that a class of reasonable bound-
ary conditions, at each point of �B, consists of

�i� a prescription of t�B
env or v, or a relation between t�B

env

and v; and
�ii� a prescription of m�B

env or P�v /�n, or a relation be-
tween these quantities.

Consistent with this observation, we consider specific bound-
ary conditions in which a portion Sfree of �B is a free surface
and the remainder Snslp is a fixed surface without slip. On
Sfree, the environmental tractions t�B

env and m�B
env vanish and the

classical condition Tn=�Kn is replaced by the conditions

Tn + divS�Gn � � = �Kn and n � Gn = 0 . �32�

To describe the conditions on Snslp, we first note that, if v
=0 on Snslp, then

P
�v

�n
= � � n �33�

with �=curl v the vorticity.
Based on this identity, we take, as boundary condition on

Snslp, the classical no-slip condition

v = 0 �34�

supplemented by a condition of the form

n � Gn = m�B
env �35�

with

m�B
env = ��� � n , �36�

where � carries dimensions of length. We refer to �36� as the
wall-eddy condition and to � as the wall-eddy length. In the
wall-eddy condition, m�B

env represents the hypertraction in-
duced by the formation of eddies at a fixed surface without
slip. The wall-eddy condition requires that this hypertraction
be parallel to the tangential vorticity. Hence, m�B

env arises in
response to the shedding of vortices at the boundary.

By �33� and �36�, the power expenditure by m�B
env in �31�

has the form

m�B
env · �� � n� = ���� � n�2. �37�

The quantity ���2 is known as the enstrophy; the field ��
�n�2 might therefore be viewed as a tangential enstrophy
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associated with the shedding of vortices at the wall.
Note that �35� and �36� combine with �24� to yield the

wall-eddy condition in the form

n � 
�2�grad � + �grad ��T�n + ��� = 0 . �38�

VII. FLOW IN A RECTANGULAR CHANNEL

We now consider the problem of a steady, turbulent flow
through an infinite, rectangular channel formed by two par-
allel walls separated by a gap 2h �Fig. 1�. We suppose that
channel walls are fixed and without slip in the sense that the
no-slip and wall-eddy conditions �34� and �36� hold. This
simple model problem allows us to investigate the effects of
the parameters �, �, and � and to make comparisons with
numerical results.

A. Explicit solution of the channel problem

Employing the notation of Fig. 1, we assume that the
velocity v has the form

v�x� = v�x2�e1; �39�

v is therefore consistent with the constraint �2� of incom-
pressibility and obeys v̇=0. In view of �39�, the Navier-
Stokes �� equation �29� gives

��v − �2v��� =
�p

�x1
,

2��2v�v� =
�p

�x2
,

0 =
�p

�x3
, �40�

while the no-slip and wall-eddy conditions �34� and �38� give

v�0� = 0,

v�2h� = 0,

�2v��0� = − �v��0� ,

�2v��2h� = �v��2h� . �41�

In �40� and �41� and what follows a prime is used to denote
differentiation with respect to the spanwise coordinate x2.

Since v depends only on x2, �40� implies that

p�x1,x2� = − Ax1 + ��2�v��x2��2, �42�

with A=constant. We assume, without loss of generality, that
the pressure decreases with increasing x2. It then follows that

A 
 0. �43�

Further, in view of �40�–�42�, v can be expressed as

v�x2� =
Ah2

2� �1 − �1 −
x2

h
	2

+
2B

h

�
1 −

cosh
h

�
�1 −

x2

h
	

cosh
h

�
�� ,

�44�

with

B =

�

�
−

�

h

1 −
�

�
tanh

h

�

. �45�

To ensure that �44� is nonsingular, the wall-eddy length � is
assumed consistent with

�

�
tanh

h

�
� 1. �46�

B. Behavior at the wall

Experiments and DNS simulations of channel flow show
that, for suitably normalized laminar and turbulent velocity
profiles, the slopes of the turbulent profiles at the channel
walls have magnitudes greater than their laminar counter-
parts �see, for example, Pope �23��. Consistent with this ob-
servation, we normalize v by its maximum value to yield

V�x2� =
v�x2�
v�h�

. �47�

For comparison, we introduce

Vc�x2� = 1 − �1 −
x2

h
	2

, �48�

which is the analogous normalization of the laminar solution
to the plane channel problem. Then, V��0�
Vc��0� if and
only if

B =

�

�
−

�

h

1 −
�

�
tanh

h

�


 0. �49�

Since �
0 and h
0 it follows that v as defined by �44�
captures the observed features of turbulent channel flow only
if the wall-eddy length obeys

� 

�2

h

 0. �50�

2h v(x2)

x2
e1

e2

FIG. 1. �Color online� Schematic for the problem of flow in a
channel of gap 2h. The coordinates in the directions downstream
and out of the plane are x1 and x3.
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C. Comparison with numerical data for the velocity profile

Assuming that wall-eddy length � obeys �50�, we now
compare the solution v to the problem for channel flow to the
mean downstream velocity for turbulent channel flow as pre-
dicted by the direct numerical simulations �DNS� of Kim,
Moin, and Moser �28� and Moser, Kim, and Mansour �29�.

To facilitate comparisons, we employ standard definitions
for the friction velocity v�, friction Reynolds number Re�,
and the viscous length y+:

v� =��w

�
, Re� =

�hv�

�
, y+ =

Re�

h
x2, �51�

with �w
0 being the wall shear stress. �Throughout this sec-
tion, we employ the terminology and notation of Pope �23�.�
In addition, we introduce a dimensionless velocity v+ via

v+�y+� =
1

v�

v� h

Re�

y+	 , �52�

with v as given by �44�. In view of �51� and �52�,

v+�y+� =
Re� �

2 �1 − �1 −
y+

Re�
	2

+
2B

h

�
1 −

cosh
h

�
�1 −

y+

Re�
	

cosh
h

�
�� , �53�

where � is defined by the pressure drop A, the half-channel
height h, and the wall shear stress �w by

� =
Ah

�w
. �54�

We use the nonlinear least-squares method to fit v+ as
defined by �52� to the average downstream velocity profile
determined by the DNS simulations of Kim, Moin, and
Moser �28� and Moser, Kim, and Mansour �29� for the nomi-
nal values Re�=180, Re�=395, and Re�=590 of the friction
Reynolds number. The values of the parameters h /�, � /�
�note from �45� that B as defined in �45� depends on both
h /� and � /��, and � determined by these fits are listed in
Table I and plots of v+ corresponding to these fits are shown,
along with the DNS data, in Fig. 2. These data show that the
ratios � /h and � /h are on the order of 10−2. These ratios

therefore correspond to dimensionless lengths in the lower
half of the buffer layer.

The second and third columns of Table I combine to yield
data relating � /h to Re�. A power-law fit then shows that
� /h�Re�

−0.882 �Fig. 3�. If we invoke the empirical resistance
law Re��Re7/8 of Blasius �30�, we find that

TABLE I. Values of h /�, � /�, and � determined by fitting v+ to
the DNS data of Kim, Moin, and Moser �28� and Moser, Kim, and
Mansour �29� for the nominal values Re�=180, Re�=395, and Re�

=590 of the friction Reynolds number.

Re� h /� � /� �

180 16.6 0.957 0.0583

395 34.8 0.974 0.0336

590 48.1 0.980 0.0239

0.1 1 10 100
0

5

10

15

20

0.1 1 10 100
0

5

10

15

20

0.1 1 10 100
0

5

10

15
Reτ = 180

Reτ = 395

Reτ = 590

y+

y+

y+

theory

DNS

theory

DNS

theory

DNS

v
+

v
+

v
+

FIG. 2. �Color online� Comparison of the dimensionless velocity
v+ with the downstream velocity determined by the DNS simula-
tions of Kim, Moin, and Moser �28� and Moser, Kim, and Mansour
�29� for the nominal values Re�=180, Re�=395, and Re�=590 of
the friction Reynolds number.

5.2 5.4 5.6 5.8 6.2 6.4
-4

-3.8

-3.6

-3.4

-3.2

-2.8 power-law fit

fitted data

6.05.0

-3.0

log10 Reτ

lo
g 1

0

� h

FIG. 3. �Color online� Plot of log10�� /h� versus log10Re�, as
determined by the fitted data in Table I. The straight line shows a
power-law fit of the form � /h�Re�

−0.882, with �2=1.11�10−4.
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�

h
� Re−0.772, �55�

where Re denotes the Reynolds number. If we identify h with
the integral length L and � with the Kolmogorov length � the
result �55� is then strikingly close to the classical scaling
relation �20–23�

�

L
� Re−3/4 �56�

for the ratio of the largest to smallest length scales present in
a turbulent flow.

Conversely, supposing that � /h�Re−3/4 and using the re-
lation � /h�Re�

−0.882, we find that Re��Re0.850 in close
agreement with the Blasius �30� resistance law.

Another interesting feature of the data in Table I is that it
suggests that � increases monotonically with Re� and should
most likely obey the limit

lim
Re�→�

� = � . �57�

Granted �57�, the wall-eddy length � would be less than or
equal to the dissipative length scale �,

� � � . �58�

This is consistent with the view that the distribution of eddy
scales represented near the boundary of a flow domain
should be dominated by the smallest scales present in the
flow �31�.

Granted �58�, it then follows from �50� that the wall-eddy
length must obey

� � h . �59�

This inequality is certainly consistent with the scaling
relation �55�.

D. Comparison with numerical data for the turbulent kinetic-
energy profile

Due to the simple nature of channel flow, the velocity
field as determined by �39� and �44� is independent of the
energetic length scale �. Information concerning that scale
can nevertheless be obtained by identifying the internal ki-
netic energy �=�2�D�2 with the turbulent kinetic energy.
With this identification, we will find that agreement with data
generated by DNS simulations requires that the energetic
length scale � be substantially larger than the dissipative
length scale �.

By �39� and �44�, �=�2�D�2=�2�u��2 /2. Thus, introducing
the dimensionless internal kinetic energy k+=2� /v�

2 and us-
ing the nondimensionalization �51� and �52�, we find that

k+�y+� =
�2 Re�

2

2h2 �dv+�y+�
dy+ �2

. �60�

Taking the previously obtained values of h /�, � /�, and �,
we use the nonlinear least-squares method to fit k+ to the
turbulent kinetic-energy �i.e., one-half the trace of the Rey-
nolds stress tensor� determined by the DNS simulations of

Kim, Moin, and Moser �28� and Moser, Kim, and Mansour
�29�. The values of � /h determined by these fits are listed in
Table II and plots of k+ corresponding to these fits are shown,
along with the DNS data, in Fig. 4. Quite interestingly, the
values of � /h coincide approximately with the upper bound
of the log-law region.

Although the overall trend of the fits agrees with the data,
their detailed features show some deviations. In particular,
the fitted peak values of the turbulent kinetic energy occur

TABLE II. Values of � /h determined by fitting k+ the turbulent
kinetic energy determined by the DNS simulations of Kim, Moin,
and Moser �28� and Moser, Kim, and Mansour �29� for the nominal
values Re�=180, Re�=395, and Re�=590 of the friction Reynolds
number.

Re� � /h

180 0.359

395 0.258

590 0.237

0.1 1 10 100
0

1

2

3

4

0.1 1 10 100
0

1

2

3

4

1 10 100
0

1

2

3

4

theory

DNS

theory

DNS

theory

DNS

Reτ = 180

Re = 395

Reτ = 590

y+

k
+

y+

k
+

y+

k
+

FIG. 4. �Color online� Comparison of the dimensionless internal
kinetic energy k+ with the turbulent kinetic energy determined by
the DNS simulations of Kim, Moin, and Moser �28� and Moser,
Kim, and Mansour �29� for the nominal values Re�=180, Re�

=395, and Re�=590 of the friction Reynolds number.
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too far from the channel walls and are too low. As a conse-
quence, the turbulent kinetic energy is too low in most of the
buffer layer and too high in the log-law region. Also, the
fitted turbulent kinetic energy vanishes, incorrectly, at the
center of the channel. These shortcomings might be attrib-
uted to the one-dimensional nature of the analytical model.
Bearing in mind that the DNS simulations are three dimen-
sional, the fits are unexpectedly good.

Combining the second columns of Tables I and II, we
arrive at data relating � /� and Re�. A power-law fit then
shows that � /��Re�

0.538 �Fig. 5�. If we again invoke the
Blasius �30� resistance law, we find that

�

�
� Re0.471. �61�

For turbulent flow �Re�1�, this result is consistent with our
previously expressed view that the energetic length scale �
should exceed the dissipative length scale �.

The importance of allowing the energetic and dissipative
length scales to differ is underscored by the foregoing re-
sults. For the Navier-Stokes � model, �=� is determined by
fitting the velocity profile. Since the values of � /h are less
than those of � /h by two orders of magnitude, the corre-
sponding peak values of the dimensionless internal kinetic-
energy for the Navier-Stokes � model must be lower by four
orders of magnitude than those obtained for the Navier-
Stokes �� model. In this sense, it would be unphysical to
identify �=��D�2 with the turbulent kinetic energy in the
Navier-Stokes � model.

The above considerations demonstrate that the length
scales �, �, and � should be viewed as problem-dependent
flow parameters rather than constitutive moduli that charac-
terize different fluids.

VIII. FREE-ENERGY IMBALANCE AT THE WALL

Recently Fried and Gurtin �7� provided a general discus-
sion of the use of a free-energy imbalance for a boundary
pillbox to develop constitutive relations describing the inter-
action of the fluid and its environment. We now sketch the
corresponding analysis, but only as it applies to the no-slip
boundary conditions �34� and �36�. Thus let S denote a fixed
�i.e., time independent�, subsurface of Snslp. We find it useful

to view S as a boundary pillbox of infinitesimal thickness
involving:

�i� a surface S with unit normal n; S is viewed as lying in
the environment at the interface of the fluid and the environ-
ment;

�ii� a surface −S with unit normal −n; −S is viewed as
lying in the fluid adjacent to the interface with the environ-
ment;

�iii� a lateral face represented by �S.

See Fig. 6.
Let �x denote the excess free energy, measured per unit

area, of the fluid at the surface Snslp, so that

�
S

�xda �62�

represents the net free energy of the pillbox.
Consider next the power expended on the pillbox surface

−S by the fluid. With this in mind, note first that, by �33� and
�34�, the power expenditure �31� due to hypertractions re-
duces to

P��B� = �
�B

m�B
env · �� � n�da . �63�

This relation �63� represents the net power expended on the
fluid at the boundary. Thus, since m−S=mS=m�B

env, the power
expended by the fluid on the pillbox surface −S has the form

�
S

m−S · �� � �− n��da = − �
S

m�B
env · �� � n�da . �64�

We assume that the power expended by the environment
on the pillbox surface S vanishes and hence that the environ-
ment is passive. Further, we neglect hyperstresses within the
fluid-environment interface. Hence there is no expenditure of
power on the lateral face of the pillbox. Thus, if we parallel
the development in bulk with the requirement that the tem-
poral increase in free energy of S be less than or equal to the
power expended on S, then we arrive at the free-energy im-
balance �cf. �17��,

�65�

5.2 5.4 5.6 5.8 6.2 6.4

1.8

2.2

2.4

2.0

6.05.0

power-law fit

fitted data

lo
g 1

0

α β

log10 Reτ

FIG. 5. �Color online� Plot of log10�� /�� versus log Re�, as
determined by the fitted data in Tables I and II. The straight line
shows a power-law fit of the form � /��Re�

0.538, with �2=2.43
�10−4.

∂SS

−S

n

−n

∂B

S

FIG. 6. �Color online� Pillbox corresponding to a subsurface S
of the boundary �B of the region B of space occupied by the body.
Only a portion of �B is depicted. Whereas n is oriented into the
environment, −n is oriented into the fluid.
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Since S is fixed, we may interchange the operations of
integration and time differentiation in �65�; thus, since S is
arbitrary, if we appeal to �36�, we are led to the inequality

���� � n�2 � − �̇x. �66�

In our discussion of channel flow in Sec. VII B we note
that the velocity field as characterized by our theory captures
the observed features of turbulent channel flow only if the
wall-eddy length obeys

� 
 0 �67�

�cf. �50��. This conclusion is underlined by the fact that for
channel flow the theory with �
0 agrees well with the DNS
simulations.

On the other hand, for channel flow �̇x�0, because the
flow is steady and v�0 at the wall. The free-energy imbal-
ance �66� therefore becomes

���� � n�2 � 0 �68�

and is violated when �
0. This observation would seem to
indicate a conceptual error in the free-energy imbalance �65�.
In fact there is such an error.

Indeed, the field v is not the actual fluid velocity vact, but
instead a filtered velocity representing an average of vact;
consequently, � represents a filtered vorticity. Thus—in
terms more suggestive than precise—the left-hand side of the
free-energy imbalance �65� represents, for a pillbox S, a dif-
ference of the form

d

dt

filtered free energy of S� − 
power expended on S

over the filtered tangential vorticity� �69�

and hence does not account for power and energy associated
with the actual motion of the fluid at the small scales �i.e.,
those scales which have been filtered and are not included�.
While it is to be expected that a free-energy imbalance
should be satisfied in any flow, laminar or turbulent, it would
seem unreasonable to require that filtered variables obey a
free-energy imbalance.

In principle, we may account for the power expenditures
and energy rates at the small scales via a “supply term”

− 
effective supply of energy to

S due to behavior at the filtered scales�; �70�

in this manner we are led to consider a generalization of �65�
in the form

d

dt
�

S
�xda − �

S
�− m�B

env · �� � n��da

− 
effective supply of energy to S due to behavior

at the filtered scales� � 0. �71�

Our theory is, of course, too coarse to determine a specific
form of the effective energy supply. Based on this observa-
tion we do not consider �65� to be a viable free-energy im-
balance and consider the theory as complete without �65�.

Finally, if we assume that the flow at the wall is dissipa-
tionless, then the inequality in �71� becomes an equality and,
granted that the effective supply of energy has a local form
measured per unit area on Snslp, we can trivially compute the
local effective supply for channel flow,


local effective supply of energy of S due to behavior

at the filtered scales� = ���� � n�2.

IX. SUMMARY

The generalization of the Navier-Stokes � model dis-
cussed here involves the Navier-Stokes �� equation

�v̇ = − grad p + ��1 − �2	�	v + 2��2 div D̊ �72�

for the filtered velocity v and, for a confined flow, the no-slip
boundary condition

v = 0 �73�

and the wall-eddy condition

n � 
�2�grad � + �grad ��T�n + ��� = 0 , �74�

where n denotes the outward unit normal to the boundary
and �=curl v is the filtered vorticity.

The Navier-Stokes �� equation and wall-eddy condition
involve three problem-dependent length scales �, �, and �,
with � and � being of energetic and dissipative origin, re-
spectively, and the wall-eddy length � being associated with
the characteristic scale of eddies at the boundary. Conven-
tional views concerning the distribution of eddy scales in the
inertial and dissipative subranges suggest that ���. Our
study of flow in a rectangular channel upholds this expecta-
tion, showing that, based on an identification between the
internal kinetic-energy �=�2�D�2 with the turbulent kinetic
energy,

�

�
� Re0.471. �75�

Even for low Reynolds number turbulent flows, � must
therefore be substantially larger than �. Furthermore, consid-
eration of the velocity profile indicates that

�

h
� Re−0.772 �76�

and that

� � � . �77�

We are therefore led to conjecture a tentative hierarchy,

� � � � � , �78�

involving the three length scales.

TURBULENT KINETIC ENERGY AND A POSSIBLE… PHYSICAL REVIEW E 75, 056306 �2007�

056306-9



A complete derivation of the Navier-Stokes �� equation
and wall-eddy condition, including discussion of the me-
chanical and thermodynamic foundations of our theory, is
provided by Fried and Gurtin �32�.
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